Extremely Effective Visible Light-Driven Generation of Hydrogen by Sol–Gel LaFeO3-Decorated g-C3N4 Photocatalyst

Author:

Al-Khthami Nada D.1,Alsawat Mohammed2,Mohamed Reda M.1,Alghamdi Yousef G.1,Zaki Zaki I.2

Affiliation:

1. Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia

2. Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia

Abstract

In order to create a new design for an efficient photocatalyst, you need to decrease the obtained band gap and isolate the charge carriers photogenerated while setting up a new visible light methodology. The latter option could be accomplished via combination of catalyst in the metal oxide form over the surface of semiconductor. Hence, the current work aimed at synthesizing a new nanocomposite material from LaFeO3/g-C3N4 through the use of mesoporous silica as a template processing g-C3N4 higher surface area, which was subsequently decorated with LaFeO3. The LaFeO3 of variable content of 1∼4% was used to decorate our targeted basic material. The structure was confirmed by ordinary techniques, in addition to photocatalytic ability via splitting water reaction. g-C3N4 and LaFeO3 photocatalytic efficiencies were compared to the newly developed LaFeO3/g-C3N4 nanocomposites showing their outstanding activity. The optimum LaFeO3 content was confirmed as 3%, which gave higher photocatalytic efficiency against both g-C3N4 and LaFeO3 (34 and 21 times respectively). To enhance the catalytic system efficiency, a scavenger with a positive hole was added as glycerol. A maximum of five runs of higher efficient reuse was examined as required, as well as stable nanocomposite photocatalyst. The mesoporous structure, high surface area, and capacity of charge separation over the photocatalysis process were all investigated as main conditions which affect photocatalytic activity of LaFeO3/g-C3N4 nanocomposites.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3