Astragalus Polysaccharide Nano-Liposomes Modulate the Inflammatory Response and Oxidative Stress in Stroke-Associated Pneumonia by Increasing OIP5-AS1 to Regulate the miR-128-3p/SIRT1 Pathway

Author:

Zhu Weidong1,Yu Lifeng1,Zhu Ze1,Zhang Dongmei1,Wang Yuyan1,Ma Jun1

Affiliation:

1. Department of Emergency, Traditional Chinese Medical Hospital of Zhuji, Zhuji 311800, Zhejiang, PR China

Abstract

Stroke-associated pneumonia (SAP) is major reason for the poor prognosis of stroke patients. Astragalus polysaccharide (APS) is a commonly used Chinese herbal extract that regulates the inflammatory response, however, its therapeutic effects on APS as well as its underlying mechanism of action are unclear. In this study, we evaluated the effects of APS nano-liposomes on SAP, including regulation of the inflammatory response and oxidative stress, as well as the underlying molecular mechanism. Serum samples of SPA were collected from patients and healthy controls and the expression of OIP5-AS1 and miR-128-3p was measured. Lipopolysaccharide (LPS) was used to construct an in vitro lung injury model using RLE-6TN lung epithelial cells and APS nanoliposomes were used for treatment. Several cellular processes were evaluated including OIP5-AS1, miR-128-3p, and SIRT1 expression by RT-PCR, SIRT1 protein expression by western blot analysis, IL-1β, TNF-α, and IL-6 expression by ELISA, a bioinformatics analysis for downstream molecular targets of OIP5-AS1, and dual luciferase and RNA immunoprecipitation (RIP) assays to identify interactions between miR-128-3p, OIP5-AS1, and SIRT1. Our results revealed low expression of OIP5-AS1 and high expression of miR-128-3p in SAP. Treatment with APS nano-liposomes reduced LPS-induced apoptosis of RLE-6TN cells, inhibited the inflammatory response and oxidative stress, and increased OIP5-AS1 and SIRT1 expression. Furthermore, the overexpression of miR-128-3p reversed the protective effect of APS nano-liposomes on LPS-induced RLE-6TN cells. In summary, OIP5-AS1 is an endogenous competitor that inhibits miR-128-3p targeting of SIRT1. APS nanoliposomes significantly reduced miR-128-3p expression resulting in increased OIP5-AS1 expression.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3