Study on Protein Nanomarker Combined with Vascular Endothelial Growth Factor to Improve Vascularization of Rabbit Urethral Defect Tissue Engineering

Author:

Yang Min1,Liu Guixi2,Ying Qiao3

Affiliation:

1. Department of Obstetrics and Gynecology, Shaxiyuan District, Luzhou People’s Hospital, Sichuan Province, 646000, China

2. Department of Urology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Sichuan Province, 621000, China

3. Department of Urology, People’s Hospital of Guang’an City (West China-Guang’an Hospital, Sichuan University), 638000, China

Abstract

To construct the tissue engineering urethral material that is closest to the normal urethral structure in the true sense in vitro. Abdominal ADSC from a 2-month-old New Zealand white rabbit was extracted and directly compounded with non-woven polyglycolic acid (PGA) (control group) to induce the differentiation of myoblasts and epithelial-like cells in vitro and shaped into urethral structure lumen Observation group); After Gd chelating protein nano-labeling and VEGF-loaded sustained release, the rabbit model of a long urethral defect was replanted and cultured for 4 weeks, 8 weeks and 12 weeks, respectively. There was no difference in urinary tract patency rate, urinary tract infection, and renal dysfunction rate between the two groups (P > 0.05). The urine flow rate in the observation group was significantly higher than that in the control group, and the residual volume decreased (P < 0.05). The blood vessel density and CD31 percentage in the observation group increased (P < 0.05). Compared with the conventional ADSC directly in contact with the composite material to construct the urethra, in vitro induction of ADSC to myoblasts and epithelial-like cells respectively, and then use the cell membrane technology to build a tissue engineering urethral material that is closest to the normal urethral structure in the true sense, and loaded with VEGF Loop release technology can significantly improve urodynamic functions, optimize tissue engineering urethral structure and vascularization, and is expected to become a new technology for constructing new tissue engineering urethral materials.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3