Molecular Mechanism of miR-29b on Gestational Diabetes and Its Influence on Trophoblast Cell Function

Author:

Li Sheng1,Yang Youhua2,Liu Fang3,Song Qian4

Affiliation:

1. School of Medicine, Jianghan University, Wuhan, 430056, Hubei, China

2. Department of Basic Medical Sciences, Jianghan University, Wuhan, 430056, Hubei, China

3. Department of Obstetrics, Hubei Maternal and Child Health Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China

4. Department of Obstetrics, Wuhan No. 6 Hospital Affiliated to Jianghan University, Wuhan, 430014, Hubei, China

Abstract

To explore the mechanism of miR-29b in gestational diabetes mellitus (GDM) and its effect on the function of trophoblast cell (TBC), the placenta tissues of 55 normal term pregnancies and 55 GDM patients were selected and rolled into control group and observation group. In the early stage, microRNA (miRNA) chips were utilized to screen the differentially expressed miRNAs in the placenta of observation group and control group. According to the microarray results of miRNAs, three differentially expressed miRNAs, namely let-7b, miR-1202, and miR-29b were selected. Then, the differences in the miR-29b level in the four groups were analyzed, namely the microRNA-29b (miR-29b minic), mini-control (minic control), microRNA-29b inhibitor (miR-29b inhibitor), and inhibitor control (inhibitor control). The results showed that miR-29b level in the placenta of observation group was substantially inferior to that of controls, with remarkable differences (P < 0.05). miR-29b level in miR-29b minic and minic control had significant changes (P < 0.01). The TBC activity of minic control was greatly superior to that of minic control, and there was considerable difference between the two (P < 0.05). The difference between miR-29b inhibitor and inhibitor control in TBC was not obvious, without considerable differences (P > 0.05). The invasion ability of miR-29b inhibitor TBC was notably superior to inhibitor control, and there were substantial differences (P < 0.05). To sum up, miR-29b had a significant inhibitory effect on the proliferation and cell activity of TBC, and can promote the apoptosis and death of TBC. Moreover, its inhibitory effect on cell migration and invasion was also suggested.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3