MicroRNA-1592 in the Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Inhibits the Glioma Development In Vivo and In Vitro

Author:

Zhang Panpan1,Wang Geng1,Zhou Fengquan1,Wang Yingyi1

Affiliation:

1. Department of Neurosurgery, Shenyang Fifth People’s Hospital, Shenyang, Liaoning, 110000, China

Abstract

This study evaluated the role of miRNA-1592 (miR-1592) carried by exosomes that originated from bone marrow mesenchymal stem cell (BMSC) in glioma. BMSCs were cultured and identified, followed by being co-cultured with glioma cells to measure cell invasion, metastasis, and apoptosis by transwell assay and flow cytometry, cell proliferation by MTT, PI3K/AKT signal protein expression by western blot. BMSC-originated exosomes with different concentrations were used as a treatment strategy for established tumor models. The tumor volume was measured and tumor tissues were harvested for immunohistochemistry and immunoblot analysis. After co-culture with BMSC-originated exosomes, glioma cells showed an up-regulated transcription of miR-1592, along with inhibited phosphorylation and activation of PI3K/AKT signal pathway. Moreover, glioma cells exhibited reduced migration and invasiveness In Vitro, which was accompanied by diminished levels of proteins involved in cellular invasiveness. Simultaneously, co-culture with BMSC-originated exosomes can restrain glioma cell proliferation via facilitating cell apoptosis In Vivo and In Vitro. In conclusion, exosome-encapsulated microRNA-1592 from BMSCs can suppress the In Vivo and In Vitro development of glioma through interfering with PI3K/AKT signaling pathway.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3