ATI-2341 Trifluoroacetic Acid (TFA) Promotes Menstrual Blood-Derived Mesenchymal Stem Cell Recruitment and Enhances Uterine Repair Through Gi Pathway in Asherman’s Syndrome

Author:

Lv Ying1,Ye Liyan1,Zheng Xiujuan1

Affiliation:

1. Department of Obstetrics, Jinhua Central Hospital, Jinhua, Zhejiang, 321099, China

Abstract

This study aimed to explore the role of ATI-2341 in Asherman’s syndrome and its impact on menstrual blood-derived mesenchymal stem cells (MenSCs). Following establishment of endometrial injury model, MenSCs were extracted from rats and cultured. They were treated with ATI-2341 TFA at different concentrations (10 ng/mL, 50 ng/mL, 100 ng/mL) and MenSCs treated without ATI-2341 TFA were taken as controls. Flow cytometry was conducted to detect the cell cycle. MTT was carried out to evaluate proliferation of endometrial cells. The expression levels of MMP-9, TIMP-1, CK, and VIM were determined with staining used to reflect morphology of endometrium. Administration with ATI-2341 TFA resulted in decreased expression of MMP-9 and increased expression of TIMP-1 in a dose-dependent manner. Of note, the increase of ATI-2341 TFA concentration was accompanied with elevated cell proliferation rate, increased number of glands in the endometrium, and decreased fibrosis area. As treated with 100 ng/mL ATI-2341 TFA, the cells exhibited more glands than that under other concentrations with uniformly arranged glands and lowest expression levels of CK and VIM, control group had plenty of blue-stained collagen fibers in the intima and least amount of glands. ATI-2341 TFA 100 ng/mL induced endometrial epithelial recruitment effect on MenSCs and promoted endometrial repair more significantly than Gi-3 pathway agonists. Collectively, ATI-2341 TFA enhances MenSC recruitment and facilitates endometrial epithelial cells proliferation and the repair of uterine damage in Asherman’s syndrome through Gi pathway. These findings provide a\ novel insight into the MenSC-based treatment against Asherman’s syndrome and deserve further investigation.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3