Albumin-Based Nanoparticles Loaded with miR-503 Antagonist Facilitate Neovascularization in the Ischemic Area of Myocardial Infarction

Author:

Wu Qian1,Chen Lu2,Chen Qingmei1,Huang Guangyin1,Xiao Xue1

Affiliation:

1. Department of Cardiovascular Division, Chongqing Jiangjin District Central Hospital, Chongqing, 402260, China

2. Department of Otorhinolaryngology, Chongqing Jiangjin District Central Hospital, Chongqing, 402260, China

Abstract

Albumin is successfully applied as a nanocarrier in the clinical nanomedicine and the abnormal miR-503 expression is related to the development of myocardial infarction (MI). This study aimed to explore the efficacy of albumin nanoparticles (NPs)-based delivery of miR-503 antagonist for MI therapy. After establishment of an animal model of MI, mice were administered albumin NPs loaded with miR-503 agonist or antagonist, normal saline (model group), CCNE1 agonist, or CCNE1 inhibitor (n = 10) with 10 mice sham-operated. Murine peripheral blood was collected to measure endothelial progenitor cells (EPCs) in peripheral blood along with analysis of miR-503, CCNE1 and SDF-1α expression by RT-qPCR, formation of new blood vessels and EPCs viability. Albumin NPs loaded with miR-503 antagonist increased EPCs number and new blood vessels formation, accompanied with down-regulation of miR-503 and up-regulation of SDF-1α and CCNE1. The NPs carrying miR-503 agonist exerted an opposite activity with less EPCs and new blood vessels than sham-operated group without significant difference between agonist group and model group. Besides, miR-503 antagonist promoted EPCs viability. Furthermore, inhibition of CCNE1 suppressed blood vessel formation and miR-503 targeted CCNE1. In conclusion, albumin-based NPs loaded with miR-503 antagonist decrease miR-503 expression and increase CCNE1 and SDF-1α expression to promotes EPCs viability and enhance the formation of new blood vessels, thereby improving MI.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3