Stard 3 (Steroidogenic Acute Regulatory-Related Lipid Transfer Domain-Containing Protein 3) Play Important Role in Preadipocyte Differentiation

Author:

Chen Zhonge1,Tang Yanhua2,Jiang Wenyong3,Zhou Xiaoqian1

Affiliation:

1. Department of Gastroenterology, The First People’s Hospital of Gui Yang, Gui Yang, Gui Zhou Province, 550000, China

2. Department of Gastroenterology Surgery, The First People’s Hospital of Gui Yang, Gui Yang, Gui Zhou Province, 550000, China

3. The First People’s Hospital of Gui Yang, Gui Yang, Gui Zhou Province, 550000, China

Abstract

Aim: To evaluate Stard 3’s effects and relative mechanisms in preadipocyto differentiation by vitro study. Materials and Methods: The 3T3-L1 cell were divided into 5 groups as NC, si-Stard 3, ROS agonist, ROS inhibitor and si-Stard 3+ROS agonist groups. The cell of different groups were evaluated by Oil red O staining and Triglyceride. Evaluating ROS production by DHE and NBT assay. Using RT-qPCR and WB methods to evaluate gene and protein expressions. Results: Compared with NC group, Triglyceride, DHE fluorescence intensity and NBT positive rate were significantly down-regulation in si-Stard 3 and ROS inhibitor groups (P < 0.001, respectively), and were significantly up-regulation in ROS agonist group (P < 0.001, respectively); However, with si-Stard 3 transfection and ROS agonist treatment, compared with si-Stard 3 group, Triglyceride, DHE fluorescence intensity and NBT positive rate were significantly increased in si-Stard 3+ROS agonist group (P < 0.001, respectively). With RT-qPCR and WB assay, Compared with NC group, Stard 3 gene and protein expressions of si-Stard 3 and si-Stard 3+ROS agonist group were significantly depressed (P < 0.001, respectively), AMPK, PPARγ, CEBPα and FABP4 gene expressions were significantly differences in si-Stard 3, ROS agonist and ROS inhibitor groups (P < 0.001, respectively) and p-AMPK, PPARγ, CEBPα and FABP4 protein expressions were significantly differences in si-Stard 3, ROS agonist and ROS inhibitor groups (P < 0.001, respectively), with si-Stard 3 transfection and ROS agonist the relative gene and protein expressions were significantly resumed compared with si-Stard 3 group (P < 0.001, respectively). Conclusion: Stard 3 knockdown had effects to suppress 3T3-L1 cells transformation into adipocytes in vitro study.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3