LncRNA Neu Mediates Bone Marrow Mesenchymal Stem Cells (BMSCs) Growth and Promotes Cervical Cancer Progression Through Suppression of MicroRNA-625

Author:

Ning Qiuxiang1,Guo Fa2,Xiao Pengfei3,Liu Xiulan1,Ding Ya4

Affiliation:

1. Department of Emergency, Hunan Provincial Brain Hospital, Changsha, Hunan, 410007, China

2. Department of Scientific Research, Hunan Provincial Brain Hospital, Changsha, Hunan, 410007, China

3. Department of Oncology, Hunan Provincial Brain Hospital, Changsha, Hunan, 410007, China

4. Department of Neurology, Hunan Provincial Brain Hospital, Changsha, Hunan, 410007, China

Abstract

The tumorigenesis mechanism of cervical cancer (CC) is complicated as several pathways deserve exploration. LncRNAs are recently highlighted to be involved in various biological processes. The role of bone marrow mesenchymal stem cells (BMSCs) in tumor regulation is recently investigated. Herein, we aimed to explore the interaction between lncRNA Neu and microRNA (miR)-625 and BMSCs in CC. Expression levels of lncRNA Neu and miR-625 in CC cells and BMSCs were determined by RT-qPCR. The relationship between lncRNA Neu and miR-625 was analyzed by Pearson correlation analysis. After cancer cells were transfected with siRNA-Neu, CCK-8 assay and clone formation assay were conducted to determine cell proliferation and viability. LncRNA Neu was highly expressed in CC cells and poorly expressed in BMSCs. Knockdown of lncRNA Neu attenuated cell viability and proliferation while increased miR-625 expression. MiR-625 expression was negatively correlated with expression of lncRNA Neu in CC cells. Overexpression of miR-625 resulted in weakened CC cell viability. Collectively, lncRNA Neu was highly expressed in CC and promoted the development of CC through stimulating the growth of BMSCs and suppressing miR-625 expression. These findings provide a novel insight into targeted therapy for CC.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3