Affiliation:
1. Department of Cardiovascular, Jiangyan Hospital of Traditional Chinese Medicine, Taizhou City, 225500, Jiangsu Province, China
2. Department of Orthopedics, Jiangyan Hospital of Traditional Chinese Medicine, Taizhou City, 225500, Jiangsu Province, China
Abstract
The abnormal expression of miRNA-146a is related to the progression of coronary arteries. This study intends to explore the protective effect of miRNA-146a on vascular smooth muscle cells (VSMCs) after coronary intervention and the related mechanism. 10 miniature pigs were randomly
assigned into control group, model group, blank group, miRNA-146a group, cilostazol group, and STAT3 signaling agonist group followed by analysis of the morphology and viability of VSMCs, expression of miRNA-146a, STAT3, NF-kB, TNF-a, IL-6, and AT-1R as well as the relationship between miR-146a
and STAT3. The BNP (192.39±12.32) pg/ml and cTnI (14.20±2.12) μg/L of model group were significantly higher than those of control group (P < 0.05). miRNA-146a level was highest in miRNA-146a group and cilostazol group, while lower in other two groups with
the lowest level in agonist group (P <0.05). The cell viability and AngII level of miRNA-146a group and cilostazol group were lower, and higher in the other two groups with highest level in pathway agonist group (P < 0.05). miRNA-146a group and cilostazol group showed lower
expressions of STAT3, NF-kB, TNF-a, IL-6, AT-1R than the other two groups. The pathway agonist group showed significantly higher level than blank group (P <0.05). liposome nanoparticles carrying miRNA-146a inhibited the activity of STAT3 signaling, down-regulated the levels of downstream
factors including TNF-a, IL-6, and TNF-a and subsequently decreased AngII and AT-1R levels, therefore playing a protective effect on VSMCs after coronary intervention.
Publisher
American Scientific Publishers
Subject
Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology