The Protective Effect of miRNA-146a Liposome Nanoparticles on Vascular Smooth Muscle Cells After Coronary Intervention

Author:

Hu Youbin1,Qian Chengmei2,Gao Linlin1,Sun Ling2,Wang Lili1

Affiliation:

1. Department of Cardiovascular, Jiangyan Hospital of Traditional Chinese Medicine, Taizhou City, 225500, Jiangsu Province, China

2. Department of Orthopedics, Jiangyan Hospital of Traditional Chinese Medicine, Taizhou City, 225500, Jiangsu Province, China

Abstract

The abnormal expression of miRNA-146a is related to the progression of coronary arteries. This study intends to explore the protective effect of miRNA-146a on vascular smooth muscle cells (VSMCs) after coronary intervention and the related mechanism. 10 miniature pigs were randomly assigned into control group, model group, blank group, miRNA-146a group, cilostazol group, and STAT3 signaling agonist group followed by analysis of the morphology and viability of VSMCs, expression of miRNA-146a, STAT3, NF-kB, TNF-a, IL-6, and AT-1R as well as the relationship between miR-146a and STAT3. The BNP (192.39±12.32) pg/ml and cTnI (14.20±2.12) μg/L of model group were significantly higher than those of control group (P < 0.05). miRNA-146a level was highest in miRNA-146a group and cilostazol group, while lower in other two groups with the lowest level in agonist group (P <0.05). The cell viability and AngII level of miRNA-146a group and cilostazol group were lower, and higher in the other two groups with highest level in pathway agonist group (P < 0.05). miRNA-146a group and cilostazol group showed lower expressions of STAT3, NF-kB, TNF-a, IL-6, AT-1R than the other two groups. The pathway agonist group showed significantly higher level than blank group (P <0.05). liposome nanoparticles carrying miRNA-146a inhibited the activity of STAT3 signaling, down-regulated the levels of downstream factors including TNF-a, IL-6, and TNF-a and subsequently decreased AngII and AT-1R levels, therefore playing a protective effect on VSMCs after coronary intervention.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3