MicroRNA-139 Facilitates Non-Small Cell Lung Cancer Progression via Modulating the Epidermal Growth Factor Receptor (EGFR)/Mitogen-Activated Protein Kinase (MEK)/Extracellular Signal-Regulated Kinase (ERK) Signaling Pathway

Author:

Zhang Hao1,Shu Ruichen2,Zhang Xun3,Sun Daqiang3

Affiliation:

1. Graduate School, Tianjin Medical University, Tianjin, 300060, China

2. Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China

3. Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, 300222, China

Abstract

We aimed to elucidate the role of miR-139 in the progression of non-small cell lung cancer (NSCLC) and its underlying mechanisms. Tumor tissues and paracancerous tissues were collected to obtain NSCLC cells and normal pulmonary epithelial cells, respectively. The expression of miR-139 in tissues and cells were determined via real-time quantitative PCR. The NSCLC cells were transfected with miR-139 inhibitor, siRNA-NC, miR-139 mimics, or vectors, respectively, followed by expression measurement of miR-139 via PCR. Colony formation and CCK-8 assays were employed to assess the cellular proliferation, along with transwell experiment for investigating the tendency of cancer cells in invasion and metastasis. The expression levels of proteins were semi-quantified via Western Blot analysis, including proteins involved in the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway and those related to epithelial-mesenchymal transition (EMT). For rescue experiments, an EGFR agonist was applied to transfect cells, followed by the detection of potentials of cancer cells in proliferation and invasion along with the expression determination of the proteins involved. Eventually, mouse xenograft models were established using cells transfected with miR-139 inhibitor or siRNA-NC, respectively, of which the tumor development was monitored and the expression of EGFR in the tumor tissues of the mouse xenograft models was detected via immunohistochemical staining. A significant increase of miR-139 was detected in NSCLC tissues, of which the elevation was related to the tumor size, malignancy, and poor prognosis. Compared with cells in the control group, miR-139 inhibition enhanced the proliferation of NSCLC cells both in vivo and in vitro, which was accompanied by the suppressed expression of proteins related to the EMT process, along with the enhanced potentials cell invasion and migration. Additionally, miR-139 modulated EGFR expression and activated its signal transduction in EGFR/MEK/ERK pathway to exert its carcinogenic function. MiRNA-139 may facilitate NSCLC progression via modulating the EGFR/MEK/ERK signal-transduction pathway.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3