Study on the Function of miR-134 on Cognitive Function of Vascular Dementia (VD) Rats and Mechanism About Oxidative Stress and Autophagy and Cofilin 2 Level

Author:

Xia Haimiao1,Wang Haipeng2,Li Yue1,Luo Ye1,Liu Yuxiang1,Wang Feng1

Affiliation:

1. The First Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar City, 161000, Heilongjiang Province, China

2. The Third Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar City, 161000, Heilongjiang Province, China

Abstract

To discuss the mechanism of miR-134 in improving cognitive function of VD rats through regulating the oxidative stress and autophagy and reducing the expression of Cofilin 2. VD rats was established. They were disposed with miR-134 antagonist. The cerebral regulatory capacity was observed through ethology. The pathological change in CAI area of hippocampus and cerebral cortex was observed with HE staining method. The regulation of miR-134 targeting downstream was analyzed through bioinformatics. The presentation level of SOD, GSH, ROS and MDA was detected. The expression of LC1/LC-3 and p62 was detected with Western Blot assay. There was visible activated microglial cells and gliocyte proliferation in VD rat’s model. The myelination was weakened. They were improved notably through the treatment with miR-134 antagonist. The expression of MDA and ROS could be restrained by miR-134 antagonist through reducing the expression of Cofilin 2. The expression of SOD and GSH could be increased and oxidative stress could be reduced. The level of autophagy could be decreased. The cognitive function of VD rats could be improved by miR-134 antagonist through regulating the oxidative stress and autophagy and reducing presentation of Cofilin 2.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Regulatory Landscape of Dementia: Insights from Non-Coding RNAs;International Journal of Molecular Sciences;2024-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3