Bone Marrow Mesenchymal Stem Cells Restrain the Migration and Invasion of Breast Cancer Cells by Up-Regulating miR-2158 and Inactivating RAI2/NLRP3 Pathway

Author:

Xu Meiyu1,Ye Shen1,Tang Zhiqiang1,Gong Shuai2

Affiliation:

1. Department of General Surgery, South Campus of the Sixth People’s Hospital Affiliated to Shanghai Jiaotong University (Shanghai Fengxian District Central Hospital), Shanghai, 201499, China

2. Department of Radiotherapy, Qingdao Municipal Hospital, Qingdao, Shangdong, 266000, China

Abstract

Exosomes are the key mediator for intercellular communication and participate in malignancies. Short non-coding RNAs derived from BMSCs-originated exosomes (BMSCs-exosomes) can be employed as biomolecules for tumor treatment. Here to we aim to dissect the function of microRNA-2158 from BMSCs-exosomes in breast malignant disease. Breast malignant cells received a separated transfection of miR-2158-mimics and miR-2158-inhibitor, and also treated with BMSCoriginated exosomes followed by analysis of cell viability by MTT method, cell invading and migrating capabilities via Transwell assays and protein levels of EMT-related and RAI2/NLRP3-related proteins by Western-blot. Breast cancer cells exhibited a significantly enhanced miR-2158 expression after transfection with miR-2158-mimics or treatment with BMSC-EXO, while it was reduced by miR-2158-inhibitor. As the miR-2158 was up-regulated, a significant impediment of proliferation and migration was denoted, along with a down-regulation of RAI2/NLRP3 signal transduction pathway and a retarded EMT process. Furthermore, cell proliferating and migrating capabilities were strengthened by miR-2158-inhibitor, together with an enhanced RAI2/NLRP3 signal and a strengthened EMT process. In conclusion, miR-2158 retarded the in vitro proliferating and migrating activities of breast malignant cells, leading to the inactivation of RAI2/NLRP3 signal transduction pathway, thereby exerting its tumor-suppressing function.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3