miR-10a Ameliorates Renal and Myocardial Injury in Sepsis Through Regulation of PI3K/AKT Signaling

Author:

Hu Chenglian1,Yang Ying2,Ye Lun3

Affiliation:

1. Department of Emergency, Central Hospital of Enshi Tujia and Miao Autonomous, Prefecture, Enshi, 445000, China

2. Linshi Community Health Service Center, Chongqing, 408118, China

3. Emergency Department, Jiangjin Hospital Affiliated to Chongqing University, Chongqing, 402260, China

Abstract

miR-10a participates in the prognosis of patients with sepsis, which also influence multiple organs and cause damages to the kidney and myocardial tissues. This study intends to assess miR-10a’s role in sepsis-induced renal and myocardial injury. 50 Wistar rats were randomized into sham-operation group, model group, MiR-10a group, positive control group and PI3K/AKT-agonist group (n = 10) followed by analysis of the histopathological changes of myocardial and renal tissues, kidney injury, expression of renal GR-α and CK-MB/CK, levels of inflammatory factors (IL-10, IL-6, IL-1β and TNF-α) and the level of miR-10a, PI3K and AKT. Rats in model group and PI3K/AKT-agonist group exhibited highest pathological score of kidney injury, expression of CK-MB, CK and renal GR-α, followed by rats in positive control group and miR-10a group. Furthermore, model group and PI3K/AKT-agonist group showed the highest level of inflammatory factors (TNF-α, IL-1β, IL-6, and IL-10), followed by positive control group and miR-10a group. Lowest miR-10a expression and highest mRNA levels of PI3K and AKT was detected in model group, PI3K/AKT-agonist group and positive control group, followed by miR-10a group. PI3K is a target of miR-10a. In conclusion, miR-10a alleviates the sepsis-induced renal and myocardial injury mainly by mediating the PI3K/AKT transduction pathway, indicating that miR-10a can be utilized as a target gene for sepsis treatment.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3