Long Non-Coding RNA-X-Inactive Specific Transcript Promotes the Retinal Ganglion Cell Survival After Optic Nerve Crush Injury by Upregulating miR-36

Author:

Ren Qingjia1,Zhang Junjun1

Affiliation:

1. The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China

Abstract

Retinal ganglion cells (RGC) axons participate in the construction of optic nerve, and prevent the damage of RGC during acute optic nerve injury. IncRNA-XIST is crucial for RGC apoptosis. Our study intends to assess IncRNA-XIST’s role in the regulation of RGC apoptosis in an attempt to provide a theoretical basis for treating optic nerve crush injury. Two genotypes of mice (wild-type and miR-36 KO) were used to establish an optic nerve crush injury model to investigate the regulatory role of IncRNA-XIST gene in RGCs apoptosis. These mice were then randomly assigned into control group (WT), injury group, and XIST/injury group. The changes of apoptotic genes and proteins in retinal ganglion cells were analyzed by qPCR, WB and TUNEL staining. In wild-type mice, RGC apoptosis was significantly increased after optic nerve compression injury, and the expression of Bax and Bad was significantly increased. When the LncRNA-XIST gene was overexpressed before retinal crush injury, the apoptosis of retinal ganglion cells was significantly reduced, and Bax and Bad levels were decreased as compared with model group of optic nerve injury. The results showed that in wild-type mice, overexpression of IncRNA-XIST gene promoted the survival of RGC after optic nerve crush injury. In addition, upregulation of IncRNA-xist expression in miR-36 KO mice did not reduce retinal ganglion cell apoptosis and alter the apoptotic protein expression after optic nerve crush injury. Defects of miR-36 alone or overexpression of XIST gene do not cause morphological damage of retina in mice. In mouse ganglion cells, miR-36 expression was up-regulated in both injured cells and overexpressed XIST gene. However, up-regulation of miR-36 caused by overexpression of XIST gene was more obvious. In addition, in vivo studies of wild-type mice, it was found that overexpression of XIST reduced retinal ganglion cell apoptosis, and this effect was abolished in miR-36 KO mice. In conclusion, lncRNA-XIST reduces ganglion cell apoptosis by upregulating miR-36 and promotes the survival of RGC after nerve crush injury.

Publisher

American Scientific Publishers

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3