Free Vibration Behavior of Carbon Nanotube Reinforced Composite Conical Shell Panel Under Thermal Environment

Author:

Krishnan S. Yogesh1,Caitanya A. K1,Tripathy P2,Kar V. R1

Affiliation:

1. School of Mechanical Engineering, VIT University, Vellore 632014, India

2. Department of Mechanical Engineering, NIT Rourkela, Rourkela 769008, India

Abstract

The free vibration of carbon nanotube reinforced composite conical shell panel is examined under temperature field. In this analysis, single-walled carbon nanotube and poly(m-phenylenevinylene-co-2,5-dioctoxy-pphenylenevinylene) are used as fibre and matrix materials, respectively. The material properties are considered as temperature-dependent. The effective material properties of carbon nanotube reinforced composite panel are evaluated through the extended rule-of-mixture. The finite element model is prepared using commercially available finite element tool ANSYS APDL. An eight node Serendipity shell element (SHELL281) is used to discretize the present conical model. The displacement field is framed in the first-order shear deformation theory with six degrees of freedom. The Block Lanczos eigenvalue extraction method is used to obtain the frequency responses. In order to obtain the appropriate mesh density for the said model, the convergence study is executed for various mesh sizes. The present results are compared and validated with the previously reported results. Finally, the influences of different parameters such as length-to-thickness ratio, volume fraction and temperature on the frequency responses of the carbon nanotube reinforced composite conical shell panel are demonstrated through numerical illustrations. The results reveal that the frequency parameters of conical shell panel enhance with the volume fraction and the length-to-thickness ratio, whereas reduce with the temperature value.

Publisher

American Scientific Publishers

Subject

General Energy,General Engineering,General Environmental Science,Education,General Mathematics,Health (social science),General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A solution to free vibration of rotating pretwisted functionally graded conical shell under nonlinear thermal environments;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2021-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3