Effect of miR-21 on Renal Fibrosis Induced by Nano-SiO2 in Diabetic Nephropathy Rats via PTEN/AKT Pathway

Author:

Guo Jifan1

Affiliation:

1. Department of Laboratory Medicine, Peking University Third Hospital, Haidian District, Beijing, 100191, China

Abstract

MicroRNAs are a type of non-coding single-stranded RNA that can mediate target mRNA degradation or inhibit target mRNA translation, thereby regulating target gene expression and have an important role in physiological and pathological processes. At present, miRs have been confirmed to be closely related to kidneys and kidney diseases, and have been involved in the occurrence, development and prognosis of renal fibrosis. Now we review the research progress of miRs in renal fibrosis in recent years, and provide references for the future diagnosis and treatment of renal fibrosis. The incidence of diabetic nephropathy (DN) is increasing year by year, the pathogenesis is complicated, and renal fibrosis occurs during the progress of the disease, which is very difficult to treat. The protein encoded by the PTEN gene has lipid phosphatase and protein phosphatase activity and is the PTEN/AKT and FAK pathway important negative regulators. It can play an anti-fibrotic effect by negatively regulating the PTEN/AKT pathway. Studies show that during the pathogenesis of DN, the expression of PTEN protein is reduced, and the PI3K/AKT pathway is activated to exert multiple fibrotic effects, but affect PTEN. The regulatory factors of expression are still not clear; moreover, the specific mechanism of the decrease in PTEN protein expression in DN pathogenesis. Therefore, this study intends to Intervention of the expression level of miRs in renal tissues, to study its regulation of PTEN and its effect on renal fibrosis, and at the same time, observe the effects on renal tubular epithelial cell phenotype and fibrotic lesions under high glucose conditions by up-regulating and down-regulating PTEN expression. Further elucidate the pathogenesis of DN renal fibrosis, and explore new effective targets for the prevention and treatment of DN.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3