Solar-Blind Photodetector with Lower Dark Current and Higher Ilight/Idark Ratio Based on Mg0.38Zn0.62O Film Deposited by Pulsed Laser Deposition Method

Author:

Cao Pei-Jiang1,Wang Qing2,Rao Ch. N.2,Han Shun2,Xu Wang-Ying1,Fang Ming2,Liu Xin-Ke2,Zeng Yu-Xiang1,Liu Wen-Jun2,Zhu De-Liang1,Lu You-Ming2

Affiliation:

1. Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, and College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China

2. Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, and College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China

Abstract

In this study, pulsed laser deposition method (PLD) was employed to grow MgxZn1-xO films on quartz substrates. The optimal deposition temperature of 300 °C for MgxZn1-xO film was decided and Mg0.38Zn0.62O, Mg0.56Zn0.44O and Mg0.69Zn0.31O films were grown respectively using MgxZn1-xO targets with different Mg contents (x = 0.3, 0.5 and 0.7). As-deposited Mg0.38Zn0.62O film possessed the mixed-phase (hexagonal and cubic phase) structure, appropriate band gap of 4.68 eV and smaller surface roughness of 1.72 nm, and the solar-blind photodetector (PD) based on it was fabricated. The key features of our PD are the cutoff wavelength of 265 nm lying in solar-blind band, lower dark current (Idark) of 88 pA, higher peak responsivity of 0.10 A/W and bigger Ilight/Idark ratio of 1688, which provide the new idea for the application of solar-blind PDs based on MgxZn1-xO films.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3