Affiliation:
1. Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
2. Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong Province, China
Abstract
Because some asthma patients have different types of inflammatory cells in their bodies, they cannot get relief with traditional drugs. However, the nano drug delivery system can realize efficient drug delivery, inflammatory cells and intracellular targeting, and the apoptosis of inflammatory
cells. This article aims to comprehensively evaluate the effects of montelukast sodium combined with graphene oxide nanomaterials on improving the clinical symptoms and airway inflammation of children with bronchial asthma, with a view to further improving the clinical treatment of children
with bronchial asthma. The results show that montelukast sodium can improve lung function in patients with asthma, and also has important effects such as anti-inflammatory and regulating immune function. After exposure to graphene oxide, the level of oxidative stress in mice increased with
brightness and humidity, demonstrating the role of T oxidative stress in the development of asthma. In addition, nanocarriers assist co-loaded drugs to deepen and enrich the pulmonary inflammation site, further achieving effective mitochondrial targeted drug delivery, thereby enhancing the
inhibitory effect of anti-apoptotic proteins, leading to inflammatory cell apoptosis.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献