Molecular Docking of Azithromycin, Ritonavir, Lopinavir, Oseltamivir, Ivermectin and Heparin Interacting with Coronavirus Disease 2019 Main and Severe Acute Respiratory Syndrome Coronavirus-2 3C-Like Proteases

Author:

Arouche Tiago da Silva1,Martins Anderson Yuri1,Ramalho Teodorico de Castro2,Júnior Raul Nunes Carvalho3,Costa Fabio Luiz Paranhos4,Filho Tarciso Silva de Andrade5,Neto Antonio Maia Jesus Chaves1

Affiliation:

1. Laboratory of Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, C. P. 479, 66075-110 Belem, PA, Brazil

2. Federal University of Lavras (UFLA), Chemistry Department, 37200-000 - Lavras, MG, Brazil

3. Post-Graduation Program in Engineering of Natural Resources of the Amazon, Institute of Technology (ITEC), Federal University of Pará, C. P. 2626, 66.050-540, Belem, PA, Brazil

4. Universidade Federal de Jataí. Rodovia BR-364, 75.8016-15 - Jataí, GO - Brazil

5. Federal University of the South and Southeast of Pará. FL 17, QD 04, LT Especial, New Marabá, 68.505-080 - Marabá, PA - Brazil

Abstract

In the current pandemic situation raised due to COVID-19, drug reuse is emerging as the first line of treatment. The viral agent that causes this highly contagious disease and the acute respiratory syndrome coronavirus (SARS-CoV) share high nucleotide similarity. Therefore, it is structurally expected that many existing viral targets are similar to the first SARS-CoV, probably being inhibited by the same compounds. Here, we selected two viral proteins based on their vital role in the viral life cycle: Structure of the main protease SARS-CoV-2 and the structural base of the SARS-CoV-2 protease 3CL, both supporting the entry of the virus into the human host. The approved drugs used were azithromycin, ritonavir, lopinavir, oseltamivir, ivermectin and heparin, which are emerging as promising agents in the fight against COVID-19. Our hypothesis behind molecular coupling studies is to determine the binding affinities of these drugs and to identify the main amino acid residues that play a fundamental role in their mechanism of action. Additional studies on a wide range of FDA-approved drugs, including a few more protein targets, molecular dynamics studies, in vitro and biological in vivo evaluation are needed to identify combination therapy targeted at various stages of the viral life cycle. In our experiment in silico, based mainly on the molecular coupling approach, we investigated six different types of pharmacologically active drugs, aiming at their potential application alone or in combination with the reuse of drugs. The ligands showed stable conformations when analyzing the affinity energy in both proteases: ivermectin forming a stable complex with the two proteases with values −8.727 kcal/mol for Main Protease and −9.784 kcal/mol for protease 3CL, Heparin with values of −7.647 kcal/mol for the Main protease and −7.737 kcal/mol for the 3CL protease. Both conform to the catalytic site of the proteases. Our studies can provide an insight into the possible interactions between ligands and receptors, through better conformation. The ligands ivermectin, heparin and ritonavir showed stable conformations. Our in-silica docking data shows that the drugs we have identified can bind to the binding compartment of both proteases, this strongly supports our hypothesis that the development of a single antiviral agent targeting Main protease, or 3CL protease, or an agent used in combination with other potential therapies, it could provide an effective line of defense against diseases associated with coronaviruses.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prospective mode of action of Ivermectin: SARS-CoV-2;European Journal of Medicinal Chemistry Reports;2022-04

2. Molecular Docking Studies of Halogenated Bicyclo[4.2.0] Inositols with SARS-CoV-2 Proteins;Ordu Üniversitesi Bilim ve Teknoloji Dergisi;2021-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3