Microstructure and Mechanical Properties of Commercially Pure Ti/Steel Joint Brazed by Zr–Ti–Ni Amorphous Filler Metal

Author:

Yoon Ken-Young1,Kim Sang-Wook1,Kim Jong-Kyun1,Jung Taek-Kyun1,Lim Seong-Sik2,Hyun Soong-Keun1

Affiliation:

1. Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea

2. Metal Forming R&D Group, Korea Institute of industrial Technology, Incheon 21999, Republic of Korea

Abstract

In this study, the characteristics of commercially pure titanium (hereinafter referred as CP-Ti)/Steel joints, brazed with Zr–Ti–Ni amorphous filler metal were analyzed. The effects of brazing temperature and time on the microstructure and joining strength of the CP-Ti/Steel joints were investigated. It was observed that Ti diffused into stainless steel substrate formed a brittle reaction zone, which contained intermetallic compounds, such as τ (Ti5Cr7Fe17), (Fe, –Ni)Ti, and FeTi, observed at the joint interface. As the brazing temperature and time increased, the width of the reaction layer in the joint was observed to increase. To suppress the oxidation of the substrates, the experiment was conducted at a cooling and heating speed of 100 °C/min, under a vacuum of 5×10−5 torr. The joining strength was observed to be significantly affected by the brazing conditions, such as temperature and duration time. The shear strength test showed that the strength increased for 15 min and then sharply decreased. This was attributed to the formation of brittle intermetallic compounds, like (Fe, Ni)Ti. The joint brazed at 880 °C for 15 min showed the maximum joining strength, of 216 MPa.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3