Adsorption Performances and Electrochemical Properties of Methyl Blue onto CoFe2O4 Nanoparticles

Author:

Zhou Xiang-Jun1,Wang Yan-Yan2,Wang Zhou3

Affiliation:

1. The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, P. R. China

2. Lianyungang Higher Vocational Technical College Traditional Chinese Medicine, Lianyungang, 222007, P. R. China

3. College of Vanadium and Titanium, Panzhihua University, 617000, P. R. China

Abstract

Magnetic CoFe2O4 nanoparticles were successfully manufactured through the process of nitrate combustion using anhydrous ethanol as fuel, they together with their intermediate were characterized by thermo gravimetric (TG) analysis, selected area electron diffraction (SAED), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), and X-ray diffraction (XRD). These results indicated a phenomenon that the magnetic CoFe2O4 nanoparticles could be formed at 400 °C, the average grain size, the specific magnetization, and the specific surface area of magnetic CoFe2O4 nanoparticles fabricated at 400 °C for 2 h with 30 mL anhydrous ethanol were corresponding 20 nm, 78.0 Am2/kg and 83.2 m2/kg. Magnetic CoFe2O4 nanoparticles were in application to adsorb methyl blue (MB) of wastewater, and their adsorption performances and electrochemical properties were investigated, the adsorption process data well agreed with the pseudo-second-order kinetics model in concentration ranging from 100 mg/L to 400 mg/L of MB. Compared with Freundlich model, Langmuir model (correlation coefficient R2 = 0.9976) could evaluate the adsorption equilibrium state of MB onto CoFe2O4 nanoparticles at indoor temperature, so the monomolecular layer adsorption mechanism was demonstrated to be the mechanism of the MB molecules' adsorption onto CoFe2O4 nanoparticles.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3