Affiliation:
1. Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
2. Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
Abstract
A nanostructured molybdenum trioxide (MoO3) layer was successfully fabricated utilizing various deposition rates, employed as an anodic buffer layer to separate the active layer from a silver anode and modifying the anodic surface to facilitate hole transportation for top-incident
organic photovoltaic (TIOPV) devices. The deposition rate and thickness of the MoO3 layer were crucial parameters for determining the surface morphology and work function, and the internal optical field distribution, respectively. These factors affected the performance of the devices
in terms of their open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF). The baseline TIOPV device without a buffer layer had a power conversion efficiency (PCE) of only 0.47%. By contrast, with a smooth 20-nm MoO3
buffer layer fabricated using a deposition rate of 1 Å/s (which prevented problems caused by the Ag anode), another fabricated TIOPV device had substantially higher VOC, JSC and FF values, which improved the PCE by a factor of 6.2 to 2.92%. When an
additional 5-nm nanostructured MoO3 layer was deposited at a deposition rate of 0.5 Å/s, the most efficient TIOPV device had an even greater PCE, a factor of 7.5 times higher at 3.53%.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering