Preparation and Characterization of Planar-Type ZnO Powder with High Aspect Ratio for Application in Ultraviolet- and Heat-Shield Cosmetics

Author:

Lee Jung-Hwan1,Lee Gun-Sub1,Park Eung-Nam1,Hong Sung-Eun2,Kye Sung-Bong2,Kim So-Won3,Gwack Ji-Yoo3,Lee Hee-Chul3

Affiliation:

1. Energy Business Unit, Duckjin Co., Siheung 15078, Korea

2. Makeup R&D Complex Center, Kolmar Korea Co., Seoul 06800, Korea

3. Department of Advanced Materials Engineering, Korea Polytechnic University, Siheung 15073, Korea

Abstract

In this study, a [0001]-plane planar-type ZnO ceramic powder material with a high aspect ratio ranging from 20:1–50:1 is synthesized using the electrolyte collected from zinc air battery power generation. This high aspect ratio may be due to the Zn(OH)2-4 anion dissolved in the electrolyte. The obtained planar-type ZnO exhibits excellent formulation stability and applicability, even when formulated as a cosmetic with a single inorganic ingredient. Compared to commercial ZnO or TiO2 powders, relatively better protection against infrared and ultraviolet (UV) radiation is realized due to its asymmetric characteristics, with a width of approximately 1 μm and thickness of tens of nm. The synthesized planar-type ZnO is mixed with nanosized ZnO or TiO2 commercial powders and formulated into various combinations to achieve a high UV protection rate and heat-blocking effect. In particular, the addition of planar-type ZnO to nanosized TiO2 powders increases the heat-blocking effect, and improves the applicability and formulation stability of the cosmetic formulation, despite the decrease in turbidity. Among all the ceramic powder combinations examined in this study, the best UV protection rate and heat-blocking effect are obtained when the synthesized planar-type ZnO is mixed with microsized and nanosized TiO2.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3