Affiliation:
1. Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
Abstract
Hydraulic fracturing and acidification are among the most commonly used methods for stimulating the tight oil reservoirs and improving oil recovery. Therefore, examining the effects of water immersion and acidification on tight oil reservoirs is important for oilfield development plans.
Core flooding testing, which analyzes the influence of core permeability variations before and after acid injection on the reservoir quality, is the conventional research method; however, it is difficult to observe the changes in minerals and pores caused by acidulation and water immersion
in situ. In this study, we conduct field-emission scanning electron microscopy (FE-SEM), MAPS, the quantitative evaluation of minerals through scanning electronic microscopy (QEM-SCAN), and describe the types of pores in tight sandstone. Further, the effects of water immersion and acidification
on pores in tight sandstone were studied. The results indicate that: (1) intergranular pores, intragranular dissolution pores, clay mineral intercrystalline pores, and micro-cracks were developed in the Gaotaizi tight sandstone in Songliao Basin, with the intergranular pores observed to be
dominant; (2) the hydration of clay minerals induced by water injection caused plugging of pores at the nanometer– micrometer scale, and plane porosity is slightly reduced (˜0.86%); (3) acidification resulted in the dissolution of carbonate minerals, increasing the porosity of
the reservoir, therefore, the increase in porosity is influenced by the carbonate mineral content. We recommend that future studies should investigate the content, type, and distribution of carbonate minerals in the operation area. During the process of reservoir stimulation, such as acidification
and CO2 injection- and-production, the influence of carbonate minerals dissolution on oil production should be considered.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering