Affiliation:
1. Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
2. College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, Guangdong, China
Abstract
Due to the complexity of traditional Chinese medicines (TCMs), it is very important to develop a method that can recognize anthraquinones, the active ingredients in TCMs, with high selectivity. Here, a molecularly imprinted fluorescence sensor was coated on the surface of carbon quantum
dots (CDs). Allobarbital was used as functional monomer for this application using theoretical calculations and was successfully synthesized and characterized. The template molecule chrysophanol was combined with the functional monomer allobarbital using a hydrogen bond array. Then, a series
of adsorption experiments were performed to study the specific recognition of anthraquinones by the prepared sensors. The results showed that the prepared sensor had a good linear response to concentrations of chrysophanol in the concentration range 0.5 mg · L-1 to 8.0 mg
· L-1, a low detection limit (5.0 μg · L-1), high stability, and a short response time (20 min). Additionally, the obtained fluorescence sensor was successfully applied to selectively recognize anthraquinones in TCMs with recoveries of 90.1% to
101.7%. The prepared sensor displays excellent sensitivity and high selectivity towards anthraquinones, mainly due to the specific hydrogen binding sites for the target molecules. Overall, this fluorescence sensor can selectively recognize anthraquinones in TCMs, and provide a method for quality
monitoring and rational utilization of TCMs.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献