Preparation and Drug Release Behavior of Nifedipine-Loaded Poly(lactic acid)/Polyethylene Glycol Microcapsules

Author:

Jeong Heeseok1,Lim Hyunju2,Lee Deuk Yong2,Song Yo-Seung3,Kim Bae-Yeon4

Affiliation:

1. Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea

2. Department of Biomedical Engineering, Daelim University, Anyang, 13916, Republic of Korea

3. Department of Materials Engineering, Korea Aerospace University, Goyang, 10540, Republic of Korea

4. Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea

Abstract

Nifedipine (NF)-loaded poly(lactic acid) (PLA) and PLA/polyethylene glycol (PLA/PEG) microcapsules are synthesized using a high-speed agitator and a syringe pump with an oil-in-water emulsion-solvent evaporation technique to evaluate the effect of PLA/PEG ratio on morphology and drug release behavior of the capsules. Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimeter (DSC), and X-ray diffraction (XRD) results indicate that PEG reacts successfully with PLA due to the ether bond between PEG and PLA. The drug release rate of PLA and PLA/PEG capsules increases dramatically from 0 to 5 min and then reaches a plateau within 15 to 20 min. Due to the high specific surface area, the amount of NF released is raised by reducing the PLA concentration from 5 wt% to 2 wt%. Unlike PLA capsules, the drug release rate of PLA/PEG capsules increases due to the size effect by varying the PLA/PEG ratio from 10/0 to 6/4. Larger PLA/PEG capsules are attributed to higher amounts of encapsulated NF. The capsules show no evidence of cytotoxicity, suggesting that the PLA and PLA/PEG drug carriers are clinically safe.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3