Affiliation:
1. Department of Cardiovascular, Tiantai People Hospital of Zhejiang Province, Tiantai, 317200, Zhejiang, China
Abstract
The main purpose of this paper is to study the effect of propylene glycol alginate sodium sulfite nanoparticles on myocardial injury in diabetic rats through Sirt1/HIF-1 α signal pathway. The effects of different doses of propylene glycol alginate sodium sulfite nanoparticles
on the content of malondialdehyde, creatine kinase, nitric oxide, the activity of superoxide dismutase, lactate dehydrogenase and nitric oxide synthetase in the myocardial tissue of diabetic rats observed. The function indexes of HIF-1 α mitochondria and measured the expression
of Sirt1/HIF-1 α pathway. The results show that compare with the diabetic model group, the blood glucose level of the rats in the propylene glycol alginate sodium sulfite nanoparticles treatment group was slightly low. The serum LDH, CK and MDA contents were significantly low,
and the activity of SOD in the myocardium in the propylene glycol alginate sodium sulfite nanoparticles treatment group was significantly higher than that in the diabetic model group in the treatment group. The activity of NOS and the content of MDA and no were lower than that in the diabetic
rats, the expression of Sirt1 and HIF-1α in myocardial tissue was increased. It suggested that propylene glycol alginate sodium sulfite nanoparticles alleviate myocardial damage in diabetic rats by regulating Sirt1/HIF-1α signal pathway, improving mitochondrial function
and inhibiting oxidative stress.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献