Comparison of Temperature Sensing Performance of 4H-SiC Schottky Barrier Diodes, Junction Barrier Schottky Diodes, and PiN Diodes
-
Published:2021-03-01
Issue:3
Volume:21
Page:2001-2004
-
ISSN:1533-4880
-
Container-title:Journal of Nanoscience and Nanotechnology
-
language:en
-
Short-container-title:j nanosci nanotechnol
Author:
Min Seong-Ji1,
Schweitz Michael A.1,
Nguyen Ngoc Thi1,
Koo Sang-Mo1
Affiliation:
1. Department of Electronic Materials Engineering, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701, Republic of Korea
Abstract
We present a comparison between the thermal sensing behaviors of 4H-SiC Schottky barrier diodes, junction barrier Schottky diodes, and PiN diodes in a temperature range from 293 K to 573 K. The thermal sensitivity of the devices was calculated from the slope of the forward voltage versus
temperature plot. At a forward current of 10 μA, the PiN diode presented the highest sensitivity peak (4.11 mV K−1), compared to the peaks of the junction barrier Schottky diode and the Schottky barrier diode (2.1 mV K−1 and 1.9 mV K−1,
respectively). The minimum temperature errors of the PiN and junction barrier Schottky diodes were 0.365 K and 0.565 K, respectively, for a forward current of 80 μA±10 μA. The corresponding value for the Schottky barrier diode was 0.985 K for a forward current of 150 μA±10
μA. In contrast to Schottky diodes, the PiN diode presents a lower increase in saturation current with temperature. Therefore, the nonlinear contribution of the saturation current with respect to the forward current is negligible; this contributes to the higher sensitivity of the PiN diode,
allowing for the design and fabrication of highly linear sensors that can operate in a wider temperature range than the other two diode types.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献