Strain-Insensitive Simultaneous Measurement of Bending and Temperature Using Long-Period Fiber Grating Inscribed on Double-Clad Fiber with CO2 Laser

Author:

Kim Min Seok1,Kim Do Kyung1,Kim Jihoon2,Lee Seul-Lee1,Choi Sungwook1,Han Jinsil2,Lee Yong Wook1

Affiliation:

1. Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan 48513, Korea

2. School of Electrical Engineering, Pukyong National University, Busan 48513, Korea

Abstract

Here we report an optical fiber sensor capable of performing strain-insensitive simultaneous measurement of bending and temperature using a long-period fiber grating (LPFG) inscribed on doubleclad fiber (DCF) with a CO2 laser at ˜10.6 μm. The LPFG inscribed on DCF, referred to as a DC-LPFG, was fabricated by scanning CO2 laser pulses on an unjacketed DCF with a specific period. Due to co-directional mode coupling, the fabricated DC-LPFG has discrete attenuation bands widely distributed over hundreds of nanometers. Among these wavelength-dependent loss dips, adjacent two dips with different resonance wavelengths were selected as sensor indicators for the measurement of bending and temperature. For these two indicator dips designated as dips A and B, their bending and temperature responses were investigated in a curvature range of 4.90 to 21.91 m−1 and a temperature range of 30 to 110 °C. With increasing bending applied to the DC-LPFG at room temperature, dips A and B showed different blue shifts. The bending sensitivities of dips A and B were measured to be approximately −0.77 and 0.51 nm/m−1, respectively. Unlike the bending response, they showed red shifts of different amounts with increasing ambient temperature, while the sensor head (i.e., the DC-LPFG) remained straight without any applied bending. The temperature sensitivities of dips A and B were measured to be ˜0.094 and ˜0.078 nm/°C, respectively. Owing to their linear and independent responses to bending and temperature, bending and temperature changes applied to the DC-LPFG could be simultaneously estimated from the measured wavelength shifts of the two indicator dips using their pre-determined bending and temperature sensitivities. Moreover, in a strain range of 0 to 2200 με (step: 200 με), strain-induced spectral variations of dips A and B were also measured, and the strain sensitivities of dips A and B were evaluated as approximately −0.028 and −0.013 pm/με, respectively. These strain-induced wavelength shifts were so small that they had little effect on the measurement results of bending and temperature. Thus, it is concluded that the fabricated DC-LPFG can be employed as a cost-effective sensor head for strain-insensitive separate measurement of bending and temperature.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3