Affiliation:
1. Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan 48513, Korea
2. School of Electrical Engineering, Pukyong National University, Busan 48513, Korea
Abstract
Here we report an optical fiber sensor capable of performing strain-insensitive simultaneous measurement of bending and temperature using a long-period fiber grating (LPFG) inscribed on doubleclad fiber (DCF) with a CO2 laser at ˜10.6 μm. The LPFG inscribed on DCF,
referred to as a DC-LPFG, was fabricated by scanning CO2 laser pulses on an unjacketed DCF with a specific period. Due to co-directional mode coupling, the fabricated DC-LPFG has discrete attenuation bands widely distributed over hundreds of nanometers. Among these wavelength-dependent
loss dips, adjacent two dips with different resonance wavelengths were selected as sensor indicators for the measurement of bending and temperature. For these two indicator dips designated as dips A and B, their bending and temperature responses were investigated in a curvature
range of 4.90 to 21.91 m−1 and a temperature range of 30 to 110 °C. With increasing bending applied to the DC-LPFG at room temperature, dips A and B showed different blue shifts. The bending sensitivities of dips A and B were measured to be
approximately −0.77 and 0.51 nm/m−1, respectively. Unlike the bending response, they showed red shifts of different amounts with increasing ambient temperature, while the sensor head (i.e., the DC-LPFG) remained straight without any applied bending. The temperature sensitivities
of dips A and B were measured to be ˜0.094 and ˜0.078 nm/°C, respectively. Owing to their linear and independent responses to bending and temperature, bending and temperature changes applied to the DC-LPFG could be simultaneously estimated from the measured wavelength
shifts of the two indicator dips using their pre-determined bending and temperature sensitivities. Moreover, in a strain range of 0 to 2200 με (step: 200 με), strain-induced spectral variations of dips A and B were also measured, and the strain sensitivities of
dips A and B were evaluated as approximately −0.028 and −0.013 pm/με, respectively. These strain-induced wavelength shifts were so small that they had little effect on the measurement results of bending and temperature. Thus, it is concluded that the fabricated
DC-LPFG can be employed as a cost-effective sensor head for strain-insensitive separate measurement of bending and temperature.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献