In Vitro Biocompatibility Test of Multiwall Carbon Nanotubes with Human Osteoblast Cells: Potential Application for Bone Implant Interface Reinforcement

Author:

Ungvári Krisztina1,Mészáros Sándor1,Szabó Anna2,Hernádi Klára2,Tóth Zsolt1

Affiliation:

1. Department of Oral Biology and Experimental Dental Research University of Szeged, Faculty of Dentistry, H-6720 Szeged, Tisza Lajos krt. 64., Hungary

2. Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich B. tér 1., Hungary

Abstract

Application of multiwall carbon nanotubes (MWCNT) as a filler component in composite materials can lead to remarkable increase in mechanical strength. It is a challenging application to form a living bone tissue biocomposite that is reinforced with MWCNTs at a dental implant—bone interface. The successful biointegration of MWCNT and the implant material depends on the processes of osseointegration, namely surface interactions at the molecular and cellular level. In this work the compatibility of MWCNT with main osseointegration processes has been overviewed with special attention to the toxicity of MWCNT for interacting human cells, and In Vitro experiments were performed with primary human osteoblast cells. The cells were isolated from oral bone fragments and grown in cell culture conditions. Plate wells were covered with MWCNT layers of three different densities. Osteoblast cell suspensions were placed onto the MWCNT layers and into empty plate wells. 24 and 72 hours after seeding the attachment and proliferation of cells was evaluated using Thiazolyl Blue Tetrazolium Bromide (MTT) colorimetric assay. The extent of cell death was characterized by Lactate Dehydrogenase (LDH) assay. The osteoblast cell viability tests show that cells were attached to all investigated surfaces, but with lower rate to higher density MWCNTs. A low level of cell death was observed in each sample type. Phase contrast and fluorescent microscopic observations show that although MWCNTs are not toxic for human primary osteoblast cells, an intense interaction of the cells with MWCNTs reduces their proliferation and markedly affects their morphology.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3