Flexible Carbon Nanotube/Polydimethylsiloxane Composite for the De-Icing of Airplane Wings

Author:

Ha Ji-Hwan1,Hong Soon-Kook2,Kim Dong-Young1,Park Sung-Hoon1

Affiliation:

1. Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Donjak-gu, Seoul 156-743, Korea

2. Department of Weapon System Engineering, Naval Academy, Kyungsangnam-Do 440-749, Korea

Abstract

In the aviation industry, the process of de-icing is critical for stable flying because of the occurrence of airplane icing. To solve the icing problem, an electrical heating system is applied for airplane de-icing. Among the materials used in the electrical heating system, carbon-nanotube polymer composites are appropriate for an ice-prevention system owing to their rapid heating properties and flexibility. In this study, we fabricated a flexible carbon-nanotube/polydimethylsiloxane composite with a high content of carbon nanotube (20 wt%) for airplane de-icing. The high-load carbon nanotube composite was fabricated using a three-roll milling method, resulting in uniform dispersion of carbon nanotubes in the polymer matrix. The carbon nanotube/polydimethylsiloxane composites exhibited uniform and stable heating performance (from room temperature to 100 °C for 25 s without thermal aggregation). In addition, the carbon nanotube/polydimethylsiloxane composite is suitable for application to the curved surface of airfoils. For the de-icing experiments, a small airplane wing consisting of carbon nanotube/polydimethylsiloxane composite as a heating unit was fabricated with a scale ratio of 15:1. We conducted electrical heating and de-icing experiments using the developed airplane-wing system for actual anti-icing/de-icing applications.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3