Nano-Crossbar Weighted Memristor-Based Convolution Neural Network Architecture for High-Performance Artificial Intelligence Applications

Author:

Kim Kyojin1,Eshraghian Kamran2,Kang Hyunsoo1,Cho Kyoungrok1

Affiliation:

1. Department of Information and Communication Engineering, Cheongju 28644, South Korea

2. iDataMap Corporation, Eastwood, South Australia 5063, Australia

Abstract

Nano memristor crossbar arrays, which can represent analog signals with smaller silicon areas, are popularly used to describe the node weights of the neural networks. The crossbar arrays provide high computational efficiency, as they can perform additions and multiplications at the same time at a cross-point. In this study, we propose a new approach for the memristor crossbar array architecture consisting of multi-weight nano memristors on each cross-point. As the proposed architecture can represent multiple integer-valued weights, it can enhance the precision of the weight coefficients in comparison with the existing memristor-based neural networks. This study presents a Radix-11 nano memristor crossbar array with weighted memristors; it validates the operations of the circuits, which use the arrays through circuit-level simulation. With the proposed Radix-11 approach, it is possible to represent eleven integer-valued weights. In addition, this study presents a neural network designed using the proposed Radix-11 weights, as an example of high-performance AI applications. The neural network implements a speech-keyword detection algorithm, and it was designed on a TensorFlow platform. The implemented keyword detection algorithm can recognize 35 Korean words with an inferencing accuracy of 95.45%, reducing the inferencing accuracy only by 2% when compared to the 97.53% accuracy of the real-valued weight case.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3