Hydrothermal Generation of 3-Dimensional WO3 Nanocubes, Nanobars and Nanobricks, Their Antimicrobial and Anticancer Properties

Author:

Qureshi Nilam1,Lee Seungjae1,Chaudhari Ravindra2,Mane Pramod2,Pawar Jayant3,Chaudhari Bhushan4,Shinde Manish5,Rane Sunit4,Kim Taesung1,Amalnerkar Dinesh1

Affiliation:

1. Nano Particles Technology Laboratory, School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea

2. Post Graduate Department of Zoology and Research Centre, Shri Shiv Chhatrapati College of Arts, Commerce and Science, Junnar 410502, Pune, India

3. Krishna Institute of Medical Sciences “Deemed To Be University”, Karad 415539, India

4. Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India

5. Centre for Materials for Electronics Technology (C-MET), Panchwati, Off Pashan Road, Pune 411008, India

Abstract

In our current endeavor, 3-dimensional (3D) tungsten oxide (WO3) nanostructures (nanocubes, nanobars and nanobricks) have been swiftly generated via hydrothermal route at 160 °C for 24 h. Physico-chemical characterization of the resultant powder revealed formation of WO3 nanostructures with predominantly faceted cube, brick and rectangular bar-like morphology. The present study was also aimed at exploring the antimicrobial and anticancer potential of WO3 nanostructures. Antimicrobial activity was tested against different micro-organisms viz., Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli and Aspergillus fumigatus. The antibacterial and antifungal activity was ascertained against these micro-organisms by measuring the diameter of inhibition zone in agar well diffusion test which revealed that the resultant WO3 nanostructures acted as excellent antibacterial agents against both bacteria and fungi but were more effective against the fungus, A. fumigatus. To examine the growth curves of bacterial cells, time kill assay was monitored for E. coli, against which significant antibacterial action of WO3 nanostructures was noted. The anti-cancer activity of WO3 nanostructures was found to be concentration-dependent against KB cell line by viable cell count method. In our pilot study, WO3 nanostructures suspension with concentration in the range of 10−1 to 10−5 mg/ml was found to kill KB cells effectively.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3