Investigation on the Structure and Fractal Characteristics of Nanopores in High-Rank Coal: Implications for the Methane Adsorption Capacity

Author:

Yang Yanhui1,Yu Kun2,Ju Yiwen2,Hu Qiuping3,Yu Bowen4,Qiao Peng2,Chen Longwei5,Zhang Pengbao1,Liu Feng5,Song Yang1,Ju Liting2,Li Wuyang2

Affiliation:

1. Coal Bed Methane Exploration and Development Pilot Test Base of China National Petroleum Corporation, Renqiu 062552, China

2. Key Laboratory of Computational Geodynamics, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. China United Coalbed Methane Co., Ltd., Jincheng Branch, Jincheng 048000, China

4. China Railway Container Transport Co., Ltd., Beijing Branch, Beijing 100055, China

5. PetroChina Huabei Oilfield Company, PetroChina, Renqiu 062552, China

Abstract

The structure and fractal characteristics of nanopores of high-rank coal were investigated using an approach that integrates N2 adsorption and field emission scanning electron microscopy (FE-SEM). The results indicated that the high-rank coal of the Shanxi Formation has a complex pore-fracture network composed of organic matter pores, mineral-related pores, and microfractures. The pore type of high-rank coal tends to be complicated, and the main pore types are inkbottle pores and open pores, which are more conducive to methane enrichment. The Ro,max has a negative relationship with the total pore volume. In addition, the ash and inertinite contents show a positive correlation with the average pore size (APS), while the fixed carbon content exhibits a negative relationship with the APS. The pore structure of high-rank coal is controlled not only by the degree of metamorphism but also by coal composition, which leads to the variation in pore structure becoming more complicated. With the increase in coal metamorphism, high-rank coal with high amounts of fixed carbon content generally possesses a higher irregularity in pore structure. No obvious relationship was observed between D2 and the coal components, which indicates that the pore structure, ash content, moisture content and other factors controlled by the metamorphism of coal have different effects on D2 that lead to this inapparent relationship. A negative relationship exists between adsorption volume and D1, which indicates that the high irregularity of the pore structure is not conducive to methane absorption and that no obvious correlation exists between the adsorption volume and D2. In the high-rank coal, the high D1 value represents the complexity and heterogeneity of the pore structure and represents a low adsorption affinity for methane molecules; in addition, D2 has no effect on the methane adsorption capacity.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3