Preparation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Nanofiber Catheter and Its Mechanism of Nerve Injury in Patients with Cervical Spine Injury

Author:

Chen Xuan1,Zhao Haiyang1,Li Ye1

Affiliation:

1. Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun City, 130033, Jilin Province, China

Abstract

At present, surgical suture treatment can be performed for spinal patients after nerve injury, but nerve regeneration and functional recovery require comprehensive treatment including drug treatment. However, there is still a lack of adjuvant therapeutic drugs that can effectively promote nerve regeneration and functional recovery. Drug treatment after nerve injury is the basis of nerve injury treatment and an important supplement to surgical treatment. Finding an effective method for treating spinal nerve injury and studying its mechanism of action may have important basic and clinical significance. The nanofiber catheter material simulates the nano/sub-micron level collagen fiber bundle structure of cells in the body, so it has been more and more widely used in the field of tissue engineering. Therefore, in this study, PHBV nanofiber catheter was successfully prepared by electrostatic spinning method, and the nanofiber catheter was characterized by SEM and DSC tests. The PHBV nanofiber catheter prepared by this research method has excellent characteristics such as porosity, large specific surface area, stable structure, thermal stability, and good mechanical properties. At the same time, adult male SD rats were selected to establish an animal model of cervical spine injury in this experiment. The expressions of three inflammation-related factors (IL-1α, IL-10 and TNF-1) were analyzed by ELISA. The results showed that in the spinal injury group, the expression of the three inflammatory factors all showed a significant increase over time and then reached a peak, then decreased and stabilized. This showed that the PHBV nanofiber catheter repairs cervical spine injury by affecting the inflammatory response, which is conducive to repairing cervical spine injury. RT-PCR was used to detect the expression of CNTF, GAP-43, and Tubulin-related proteins. During the neural regeneration process in rats, the expressions of both backbone proteins continued to be expressed, and they were first up-regulated and then flattened. This indicated that in the early stage of neural regeneration, a large number of skeletal proteins are synthesized, and they continue to be expressed at low levels over time, laying a foundation for the axon skeleton reconstruction.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3