Preparation of Isorhamnetin Nanoparticles and Their Targeting Efficiency to Nasopharynx Cancer

Author:

Yang Bo1,Zhang Fang2,Yuan Weili3,Du Li2,Jiang Xuejun1

Affiliation:

1. Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China

2. Department of Otolaryngology Head and Neck Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China

3. Department of Oral and Maxillofacial Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China

Abstract

Cancer is a serious threat to human health and longevity, and is an important cause of disease death. At present, cancer is mainly treated by surgery, radiotherapy, chemotherapy, etc. The existing various methods of treating tumors have their limitations. Although there are immune, genetic and other treatment methods, they are still immature. Therefore, tumor-targeted drug delivery systems have attracted more and more attention in cancer treatment. Targeted nano-drugs are selectively targeted to the tumor surface to achieve targeted drug delivery. New nano-drugs have created new hotspots in medical research. It could be a new strategy for treating cancer. Carboxymethyl chitosan (CMC) is formed by the carboxylation of chitosan. It has good water solubility and biodegradability, biocompatibility and antibacterial properties, so CMC is the best choice as a nanomaterial. Isorhamnetin (Iso) is an important anticancer drug. This article uses nanomedicine technology to construct CMC as a carrier, Iso as an antitumor drug, and using polydopamine (PDA) to modify the surface of the particles. Through in vitro and in vivo experiments, the Iso/CMC-PDA nanosphere Targeting and Growth Inhibition of Cervical Cancer Cells.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3