Modelling and Evolution of Conducting Filament in TiOx Memristor Using Conducting Atomic Force Microscopy

Author:

Panda Debashis1,Kumari Roshni2,Pradhan Alaka1

Affiliation:

1. Department of Physics, National Institute of Science and Technology, Orissa, Berhampur 761008, India

2. Department of Electrical and Electronics Engineering, National Institute of Science and Technology, Orissa, Berhampur 761008, India

Abstract

Conducting filament evolution in TiOx based resistive switching memory fabricated by simple oxidation of Ti film is investigated. Formation of titanium oxide is confirmed from the X-ray diffraction study. Forming is required to initiate the switching process. A bipolar analog switching is observed with a positive set and negative reset voltage. The switching properties in TiOx layer owing to the formation of conducting filament is confirmed from the conducting atomic force micrograph at different bias voltage. A significant change in surface topography as a filament formation during set and reset is presented. Conduction mechanism inside the device at various voltage and effect of tunnel width on current is studied. The effective tunnel width of conduction filament and related parameters for device using device modelling (Threshold Adaptive Memristor model) is studied. The device can be used for synaptic applications.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3