Oxide scale behavior of Al–7.5 mass%Mg alloy containing trace Ca during short-term oxidation

Author:

Ha Seong-Ho1,Yoon Young-Ok1,Kim Bong-Hwan1,Lim Hyun-Kyu1,Lim Sung-Hwan2,Kim Shae K.1

Affiliation:

1. Advanced Materials and Process R&D Department, Korea Institute of Industrial Technology, Incheon, 21999, Korea

2. Department of Advanced Materials Science and Engineering, Kangwon National University, Chuncheon, 24341, Korea

Abstract

In this study, using transmission electron microscopy and phase diagrams from thermodynamic calculations, we investigated the oxide film formation of Al–7.5 mass%Mg alloy containing Ca traces during short-term oxidation in terms of the thermodynamic stability and multi-element oxides by inter-diffusion based on the results of analysis for the oxide film. For the oxidation test at 515 ˚C, for 1 h, its results showed that there is no significant difference between the Ca-added and Ca-free Al–7.5 mass%Mg alloys was observed, while further exposure caused the Ca-free alloy to gain significant weight. Based on the standard Gibbs free energy for oxide production calculated in this study, CaO was the most preferential product among the single metal oxides examined. As per calculations for MgAl2O4-spinel formation reactions, the spinel formation from MgO was thermodynamically the most favorable. According to the phase diagrams calculated in this study, various multi-element oxides including Ca could possibly form in the oxide layer of Ca-added alloy. The analysis results of transmission electron microscopy confirmed that MgO is the primary oxide in the Al–Mg binary alloys. In oxidation tests conducted for less than 1 h, the spinel was rarely found. The outmost areas of oxide layers correspond to MgO and CaO in Ca-free and Ca-added alloys, respectively. However, in the Ca-added alloy, the inner layer contains certain amounts of Ca, Al, and Mg.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3