Novel application of agarose in cultivating microorganisms in the stomach and rapid drug susceptibility testing of Helicobacter pylori

Author:

Sun Qijuan1,Li Chengbo2,Xu Xiaona3,Zhao Haitao4,Liu Chenguang5

Affiliation:

1. School of Anesthesiology, Weifang Medical University, Weifang, 261053, PR China

2. School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China

3. Department of Central Laboratories, Qingdao Municipal Hospital, Qingdao, 266000, PR China

4. Dongying Municipal Bureau of Marine Development and Fisheries, Dongying, 257000, PR China

5. College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China

Abstract

Agarose is a promising tool for encapsulating areas as a kind of neutral polysaccharide. The purpose of this work is to expand the application of agarose. In this work, agarose microparticles for encapsulating microorganisms were introduced to the stomach through a novel water-in-water (w/w) emulsification method. Sequencing techniques were performed for the identification and characterization of bacteria, and drug-susceptibility testing of Helicobacter pylori through gel microdroplets growth assay and traditional Oxford cup method was conducted. Results indicated the presence of three phyla, eight genera, and more than 30 species in the samples. The correlation values of the traditional Oxford cup and GMD methods were 87.5% and 90%, respectively. The proposed encapsulation technology as efficient substitution for traditional Oxford cup method promised to be applicable for the isolation and cultivation of gastric flora. Compared to other methods, this new method showed advantages when mainly due to time simplicity of the whole process. The direct drug susceptibility test based on the novel encapsulation technology is a promising tool for the rational and flexible use of drugs in clinical practice. Furthermore, this work was an early exploration for the combination of encapsulation technology and agarose.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3