Affiliation:
1. Chemistry Department, Faculty of Science, Albaha University, Abaha, 4781, KSA
Abstract
The antimicrobial resistance is a global human threat which has led to the withdrawal of antibiotics from the market. Therefore, it is a need to develop new and effective antimicrobial agents to overcome this problem. In this paper, new Dioxovanadium(V) complexes (1–8) with ligands
viz. (2-(5-phenyl-1,3,4-oxadiazole-2-yl)phenol; L1) and 2,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole (L2) were synthesized and assessed for antimicrobial-activity. Both a bidentate and tetradentate oxadiazole ligands coordinate with vanadium ions through the nitrogen and oxygen atoms
giving octahedral geometries. Thermal analysis and IR data confirmed the presence of hydrated water in the metal-complexes. The investigated compounds were assessed for antimicrobial viz four strains of bacterial and one a fungal strain. The antibacterial data showed that, the complexes (1–8)
are lower potency against bacterial strain than the free ligands except (5) and (7) complexes. These complexness showed the highest antibacterial potency via the Staphylococcus aureus. All investigated compounds were inactive against C. albicans except complexes 2 and 5 which showed
high activity. The performance of DFT was conducted to examine an interaction mode of the target compounds with biological system. The QSPR was calculated as: optimization geometries, (FMOs), and chemical-reactivities for the synthesized compounds. The (MEPs) were figured to predict the interaction
behavior of the ligand and its complexes against the receptor. The molecular docking was performed against DNA gyrase to study the interaction mode with biological system.
Publisher
American Scientific Publishers
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献