Multi-wave UV-photocatalysis system (UVA+UVC+VUV/Cu-N-TiO2) for efficient inactivation of microorganisms in ballast water

Author:

Lu Zheng1,Wang Yinhao1,Zhang Shun1,Zhang Kun1,Shi Yue1,Meng Chengxin1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150000, China

Abstract

Ballast Water Treatment System (BWTS) is a system designed to remove biological organisms from ballast water. However, the existing BWTSs often have problems in practical applications. In this study, a multiwave ultraviolet (UV)-modified TiO2 photocatalyst biological inactivation system (longwave UV, UVA+shortwave UV, UVC+vacuum UV, VUV/Cu-N-TiO2) for microorganism inactivation in ballast water was established. The results showed that the UVA+UVC+VUV/Cu-N-TiO2 system improved the UV light quantum yield and catalyst activity in the photocatalytic reaction and fully utilized the synergistic inactivation effect of Cu-N-TiO2 photocatalyst+ multiwave UV light (UVA, UVC, and VUV) on microorganisms. Compared with 8 other photocatalytic systems, the logarithmic algae removal rate and logarithmic sterilization rate of the UVA+UVC+VUV/Cu-N-TiO2 system increased to 1.78 log and 5.86 log, respectively. The turbidity of the seawater affected the microorganism inactivation to a certain extent. The humic acid concentration should be controlled below 2 mg L−1 for the UVA+UVC+VUV/Cu-N-TiO2 system to inactivate microalgae more effectively. The multiwave UV photocatalytic system could significantly increase the lipid peroxidation products in microbial cells, rapidly reduce superoxide dismutase (SOD) activity, and degrade a large amount of chlorophyll within a short hydraulic residence time (HRT). Severe damage to the microbial cell membrane can destroy the normal functions of cells, resulting in the death of microorganisms. In conclusion, the UVA+UVC+VUV/Cu-N-TiO2 system is a potential new ballast water treatment system.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3