Effect of lactic-co-glycolicacid nanoparticles polymer encapsulated quercetin on hypoxia/reoxygenation-induced cardiomyocyte injury and its mechanism

Author:

Song Shubo1,Liang Weijie1,Li Bin1,Dong Haoju1,Wu Kaiyuan1,Zhao Liyun1,Fan Taibing1

Affiliation:

1. Department of Cardiovascular Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, PR China

Abstract

This study aimed to elucidate the impact of quercetin (Que)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-Que) on hypoxia/reoxygenation (H/R)-induced cardiomyocyte (CM) injury and its mechanism. PLGA-Que was first prepared, and H/R CMs were intervened with either PLGA-Que or free Que. The results showed that both PLGA-Que and free Que could enhance H/R CM viability, inhibit apoptosis, and lower the oxidative stress response. However, PLGA-Que was more protective of H/R CMs than free Que. Subsequently, noticeably enhanced viability and reduced apoptosis of H/R CMs were determined after miR-499-5p or miR-375 up-regulation. Lastly, the inhibitor sequences of either miR-499-5p or miR-375 were transfected into PLGAQue-treated H/R CMs. The results showed that both sequences reversed the enhancement of viability and inhibition of apoptosis of H/R CMs intervened by PLGA-Que. Thus, PLGA-Que can treat H/R-induced CM injury by up-regulating miR-499-5p and miR-375.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3