Effect of intra-articular injection of adipose stem cells on traumatic osteoarthritis cartilage defects

Author:

Wang Qian,Yang Na,Zhang Kun,Li Zhong,Zhu Yangjun,Song Zhe

Abstract

Traumatic osteoarthritis with cartilage defects can lead to mobility problems. Mitotic activity in cartilage is extremely low, and once damaged, repairing can be difficult. The commonly used autologous or allogeneic cartilage transplantation techniques also have certain limitations. In recent years, directed induction of osteoblastic differentiation using adipocytes has been shown to be effective in repairing cartilage defects. However, it is often induced in vitro and is prone to incomplete or over-differentiation. In addition, because of the large differences in the in vivo and in vitro microenvironment, exploring the influence of these differences in the in vivo microenvironment on the directional differentiation of adipose-derived stem cells (ADSCs) and their effect on cartilage repair is necessary. In this study, a cartilage defect model in rabbits with traumatic osteoarthritis of the left knee was established, and different interventions were conducted in different groups. We determined the effect of directly injecting ADSCs into the joints on repairing cartilage defects in rabbits with traumatic osteoarthritis and analyzed the differences in repair time of newly developed cartilage defects and old cartilage frontal defects. The results indicated that the placement of a stent and injection of ADSCs improved the knee joint activity, increased the expression of BMP and TGF-β protein, and reduced the expression of inflammatory factors, including IL-1β, IL-6, IL-17, and TNF-α. No difference was found between the new cartilage defect and the old one. By directly observing the cartilage defect, intervention with ADSCs + scaffold increased the connection between the cartilage defect and the normal tissue and improved the cartilage repair effect. These results indicated that directly injecting ADSCs into the joints is an effective approach for repairing cartilage defects in traumatic osteoarthritis, and it was not affected by the age of the defect.

Publisher

American Scientific Publishers

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3