Design and formulation of microbially induced self-healing concrete for building structure strength enhancement

Author:

Sundravel K. Vijaya1,Ramesh S.2,Jegatheeswaran D.3

Affiliation:

1. Assistant Professor, Department of Civil Engineering, K.S. Rangasamy College of Technology, Tiruchengode 637215, Tamilnadu, India

2. Department of Civil Engineering, K.S. Rangasamy College of Technology, Tiruchengode 637215, Tamilnadu, India

3. Department of Civil Engineering, Sona College of Technology, Salem 636005, Tamilnadu, India

Abstract

Self-healing concrete is described as the capability of material to repair their cracks independently. Cracks in concrete are well-known circumstance because of their short tensile strength. Many researchers carried out their research on self-healing concrete using different classification and clustering methods. But the temperature variation and pH variation were not minimized. In order to address these problems, a Multivariate Logistic Regressed Chi-Square Deep Recurrent Neural Network based Self-Healing (MLRCSDRNN-SH) Method is introduced. The main aim of MLRCSDRNN-SH method is to improve building structures strength through inducing the micro-bacteria in concrete. Multiple Logistic Regressed Chi-Square Deep Recurrent Neural Network (MLRCSDRNN) is used to revise bacteria’s stress-strain behaviour towards enhanced material strength in the MLRCSDRNN-SH approach. Initially, the bacteria selection is carried out in alkaline environment like Bacillus subtilis, E. coli and Pseudomonas sps. The data sample is given to the input layer. The input layer transmits sample to the hidden layer 1. The regression analysis is carried out between the multiple independent variables (i.e., parameters) using multivariate logistic function for improving the building structure strength. The regressed value is transmitted to the hidden layer 2. The pearson chi-squared independence hypothesis is performed to identify the probability of crack self-healing property for increasing the building structure strength. When probability value is higher, then the building structure strength is high. Otherwise, the output of second hidden layer is feedback to the input of hidden layer 1. The mixture with higher strength of building structure is sent to the output layer. Several specimens have different sizes used by various researchers for bacterial material study in comparison with the concrete. Depending on experimental results, compressive strength restoration proved higher self-healing ability of the concrete.

Publisher

American Scientific Publishers

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3