Time Series Analysis for Prediction of PM2.5 Using Seasonal Autoregressive Integrated Moving Average (SARIMA) Model on Taiwan Air Quality Monitoring Network Data

Author:

Doreswamy 1,Harish Kumar K. S.1,Gad Ibrahim1

Affiliation:

1. Department of Studies and Research in Computer Science, Mangalore University, Mangalore 574199, Karnataka, India

Abstract

Nowadays, in Taiwan, due to the increasing number of vehicles, industrialization of large energy consumption, uncontrolled constructions and urbanization, air pollution is becoming a major problem. Hence, it is necessary to control air pollution by applying air quality monitoring actions. The particulate matter (PM2.5) of the air pollution in TAQMN data is the main pollutant accountable for at least two-thirds of the severely polluted days in the major cities of Taiwan. In this work, machine learning (ML) techniques are widely used in developing models that can be used to control the air pollution. Seasonal Autoregressive Integrated Moving Average (SARIMA) model is used to predict the air pollution concentration, where the dataset chronologically from 2012 to 2016 are used to train the proposed method and testing data set from 2016 to 2017. The result of the SARIMA model shows high precision in forecasting the future values of particulate matter (P2.5) level with minimum error.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Computational Mathematics,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3