Convolutional Recurrent Neural Networks Based Speech Emotion Recognition

Author:

Gayathri P.1,Priya P. Gowri1,Sravani L.1,Johnson Sandra1,Sampath Visanth2

Affiliation:

1. Department of Computer Science and Engineering, R.M.K. Engineering College, Chennai 456001, India

2. Software Developer, Zilker Technology, Chennai 456001, India

Abstract

Recognition of emotions is the aspect of speech recognition that is gaining more attention and the need for it is growing enormously. Although there are methods to identify emotion using machine learning techniques, we assume in this paper that calculating deltas and delta-deltas for customized features not only preserves effective emotional information, but also that the impact of irrelevant emotional factors, leading to a reduction in misclassification. Furthermore, Speech Emotion Recognition (SER) often suffers from the silent frames and irrelevant emotional frames. Meanwhile, the process of attention has demonstrated exceptional performance in learning related feature representations for specific tasks. Inspired by this, propose a Convolutionary Recurrent Neural Networks (ACRNN) based on Attention to learn discriminative features for SER, where the Mel-spectrogram with deltas and delta-deltas is used as input. Finally, experimental results show the feasibility of the proposed method and attain state-of-the-art performance in terms of unweighted average recall.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Computational Mathematics,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3