Anti-Fog Imaging and Ship Positioning and Berthing Method Based on Solar-Blind Ultraviolet Optical Electronic Signal

Author:

Zhu Xi,Li Xiang,Cao Xun,Yue Tao,Yan Feng

Abstract

The foggy environment, particularly in the dense fog, would significantly weaken the general optical imaging capability. In such condition, common optical imaging methods could hardly recognize targets and self-position in an effective manner, severely impacting ship berthing operation. Targeted at ship berthing in foggy days and based on zero background interference of solar-blind ultraviolet (UV) optical electronic signal, calibration and imaging positioning method based on solar-blind UV imagers were studied here, achieving three-dimension positioning with high precision. Direct imaging and accurate positioning for assisting in ship berthing could be realized at the same time. In this article, local positioning effect in the foggy environment was evaluated by applying solar-blind UV imaging band. The measurement results verify that accurate positioning could be achieved in the foggy environment by solar-blind UV anti-fog imaging positioning approach to satisfy demands of ship berthing in foggy days.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3