Effect of Strontium Doping Into CaBi2Nb2O9 Aurivillius Oxide Nanoceramics: Structural and Electrical Properties

Author:

Jalled Ouissem1,Alhassan Mariah1,Alharbi Seham R.2,Alharbi Zaynab3,Al-Hadeethi Yas1,Mohammed Hiba4,Miao Xiaohe5

Affiliation:

1. Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Physics Department, Faculty of Science, Jeddah University, Jeddah 21959, Saudi Arabia

3. Department of Physics, Faculty of Art and Science, King Abdulaziz University, P.O. Box 80203, Rabigh 21911, Saudi Arabia

4. Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy

5. KAUST Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Abstract

Herein, we report the synthesis and characterization of Ca1-xSrxBi2Nb2O9 (CSBNO) (0 ≤ x ≤ 1) nanoceramics prepared using sucrose-assisted sol–gel combustion methods. The synthesized nanoceramics were characterized by different tools like differential thermal and thermogravimetric analyzer (DTA-TG), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR) spectrometer, X-ray powder diffraction (XRD), and impedance analyzer. DTA-TG reveals that the optimum temperature of calcination of CBN is higher than 1000 °C. The FTIR revealed the formation of CaBi2Nb2O9 (CBNO) at 614 cm-1. The XRD confirmed that all samples exhibited orthorhombic crystal structure. Increased orthorhombic distortion was spotted for doped CBNO and the structure acquires extra orthorhombicity through Sr doping. The TEM measurement inspected the increase of the grain size due to the inclusion of strontium into the orthorhombic crystal structure of CBNO from 56 nm to 76 nm. The dielectric constant measurement demonstrated that the increase in Sr content is associated with steady decrease in Curie temperature from 1207 K up to 720 K. The dielectric loss exhibited a minimum value at x = 0.5 and high stability along the temperature range of 300–850 K. Such property may enable this nanocomposite to be used for the application of FeRAM.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3