Optimization of Laser Recrystallization Process for GeSn Films on Si Substrates Based on Finite Difference Time Domain and Finite Element Method

Author:

Zhang Chao,Song Jianjun,Zhang Jie

Abstract

GeSn alloy on Si substrate has the advantages of high carrier mobility, high radiation recombination efficiency, compatibility with the Si process, and is widely used in the field of semiconductor optoelectronics. However, due to the high lattice mismatch between the GeSn epitaxial layer and the Si substrate, how to prepare a perfect GeSn film on the Si substrate is an issue. The 808 nm continuous wave laser recrystallization technology can significantly improve the quality of the GeSn alloy epitaxial layer by melting and recrystallization, which provide another technical way for solving this problem. Optimized laser recrystallization related process parameters is necessary when laser recrystallization technology is used to prepare high quality GeSn alloy on Si substrate. For this purpose, the absorption, reflection and transmission models of GeSn alloy epitaxial layer/Si substrate system irradiated by 808 nm continuous wave laser are established using finite difference time domain software FDTD Solutions. The thickness-related process parameters of GeSn alloy epitaxial layer and SiO2 capping layer are optimized. In addition, the temperature distribution model of 808 nm continuous wave laser irradiation of GeSn alloy epitaxial layer on Si substrate system is obtained by COMSOL Multiphysics simulation. The process parameters related to laser recrystallization temperature are optimized and listed, which can be used as important technical references for the growth of low defect density GeSn layer on Si substrate assisted by the laser recrystallization technology.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3